Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs
نویسندگان
چکیده
In this paper, we propose several improvements on the block-coordinate Frank-Wolfe (BCFW) algorithm from Lacoste-Julien et al. (2013) recently used to optimize the structured support vector machine (SSVM) objective in the context of structured prediction, though it has wider applications. The key intuition behind our improvements is that the estimates of block gaps maintained by BCFW reveal the block suboptimality that can be used as an adaptive criterion. First, we sample objects at each iteration of BCFW in an adaptive non-uniform way via gapbased sampling. Second, we incorporate pairwise and away-step variants of Frank-Wolfe into the block-coordinate setting. Third, we cache oracle calls with a cache-hit criterion based on the block gaps. Fourth, we provide the first method to compute an approximate regularization path for SSVM. Finally, we provide an exhaustive empirical evaluation of all our methods on four structured prediction datasets.
منابع مشابه
Block-Coordinate Frank-Wolfe for Structural SVMs
We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves the same convergence rate as the full Frank-Wolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this algorithm has the same low iterat...
متن کاملBlock-Coordinate Frank-Wolfe Optimization for Structural SVMs
We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves a similar convergence rate in duality gap as the full FrankWolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this yields an online a...
متن کاملHADES: Hierarchical Approximate Decoding for Structured Prediction
Many fundamental tasks in machine learning require predicting complex objects rather than a simple yes-no answer or a number. Structured Output Prediction deals with learning such complex objects, which model an inherent structure between interdependent variables. Recently, large margin methods like Structured SVMs (SSVM) have gained popularity to solve this task due to efficient and generalize...
متن کاملFrank-Wolfe Algorithms for Saddle Point Problems
We extend the Frank-Wolfe (FW) optimization algorithm to solve constrained smooth convex-concave saddle point (SP) problems. Remarkably, the method only requires access to linear minimization oracles. Leveraging recent advances in FW optimization, we provide the first proof of convergence of a FW-type saddle point solver over polytopes, thereby partially answering a 30 year-old conjecture. We a...
متن کاملEfficient Training of Structured SVMs via Soft Constraints
Structured output prediction is a powerful framework for jointly predicting interdependent output labels. Learning the parameters of structured predictors is a central task in machine learning applications, however, training the model from data often becomes computationally expensive. Several methods have been proposed to exploit the model structure, or decomposition, in order to obtain efficie...
متن کامل